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Steady state conduction of heat from a stationary wall to a medium moving at a uniform velocity is the
subject herein. This medium can be a solid or a fluid moving at a constant velocity. The surface of this
medium is insulated until a change in the surface heat flux occurs. The determination of temperature
field is the main objective herein. The results show that the surface temperature begins to increase before
its arrival to the heater’s location where there is an abrupt change in the surface heat flux. The application
of this phenomenon to a moving wall with frictional heating at its surface and to classical heat transfer in
ducts can lead to new information.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Analytical studies of convective heat transfer in the presence
of axial conduction within fluid passages are reported by many
investigators. A study for flow between parallel plates at small
Peclet numbers is in Agrawal [1]. The Graetz-type solution is
also extended to include the effect of axial conduction by other
investigators, e.g., Henneck [2] and Bayazitoglu and Ozisik [3].
Other related heat transfer studies in the presences of axial con-
duction are in [4–12]. Also, the effect of axial conduction can
evolve during heat transfer through microchannels [13]. These
and other similar studies use series solutions that converge
slowly where there is a step change in the wall condition. For
slug flow, a closed-form exact solution of heat transfer from
the wall to a moving semi-infinite domain with a step change
in the wall temperature is in [14]. It provides the limiting solu-
tion for heat transfer coefficient at very small distance from the
location of temperature changes in other flow passages [15,16].
The present work is a continuation of the mathematical formula-
tion in [14] modified for the boundary condition of the second
kind at the wall. As reported in [14–16], the thermal conduction
dominates near the wall at small distances from the location
where the wall temperature changes. This phenomenon, when
there is a step change in the wall heat flux, provides related
but different information for the determination of wall tempera-
ture and temperature field in various-shaped ducts.
ll rights reserved.
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The case of slug flow presented here has direct applications to
flow in porous passages. In these passages, permeability controls
the effective thermal conductivity and the Darcy number [17–
20]. Therefore, the slug flow becomes a reasonable limiting case
when the Darcy number is very small. Additionally, when the fluid
velocity in a packed porous passage is small, the Peclet number can
become small. For an alternative application, one can view this
moving medium as a solid moving over a contact zone with an-
other solid. The heat generated due to frictional heating is the wall
heat flux that depends on the applied pressure.

The first mathematical formulation given herein and subse-
quent numerical calculations include the effect of axial conduc-
tion of heat in the flow direction parallel to a wall, as shown
in Fig. 1. Fig. 1 shows a semi-infinite medium is moving with
uniform velocity over a thermally insulated stationary infinite
wall when x̂ < 0 and there is a prescribed finite wall heat flux
qw when x̂ > 0. Furthermore, the medium with an approaching
temperature Ti occupies a region between ŷ ¼ 0 and ŷ ¼ 1. This
condition also corresponds to the slug flow approximation for
the study of heat transfer in fluid saturated porous passages.
Therefore, it can provide limiting values for the wall temperature
and the corresponding heat transfer coefficient when the perme-
ability is very small. The methodology presented in this study
leads to a closed-form solution that provides accurate informa-
tion as x̂ goes toward zero. The numerical results directly apply
to heat transfer to slug flow in fluid saturated porous passages
when the temperature penetration at the entrance location is
small. Also, as expected, this solution provides an upper limit
for the values of the Stanton number.

mailto:haji@uta.edu
http://www.sciencedirect.com/science/journal/00179310
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Nomenclature

Am,Bm constants in series solutions
cp specific heat, J/kg K
Dh hydraulic diameter, m
g(x) Boundary condition in Eq. (3), K
h qw/(Tw � Tb), W/m2 K
h0 qw/(Tw � Ti), W/m2 K
H half distance between plates, m
k thermal conductivity, W/m K
Lc stands for W, H, or r0, m
NuD hDh/k
Pe Peclet number ULc/a
q(x,y) heat flux function, W/m2

qw wall heat flux when x > 0, W/m2

r̂ radial coordinate, m
r r̂=r0

r0 pipe radius, m
St Stanton number h/(qcpU)
T temperature, K
Ti temperature when x̂! �1, K
U velocity, m/s
W fluid layer thickness, m
x x̂=Lc

x̂ axial coordinate, m

y ŷ=Lc

ŷ; ẑ coordinates, m

Greek symbols
a thermal diffusivity, m2/s
bm axial eigenvalue when x < 0
cm eigenvalue
e a constant, 0 or 1
g parameter for y or r
h reduced temperature Tðx; yÞ � Ti, K
k dummy variable
km axial eigenvalue when x > 0
n dummy variable
q density, kg/m3

U reduced dimensionless temperature
W special eigenfunction
x UW/2a

Subscripts
1 when x̂ < 0
2 when x̂ > 0
b bulk temperature
w wall
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2. Mathematical formulation for semi-infinite domains

As stated earlier, the domain of interest is a semi-infinite region
when �1 < x < +1 and 0 6 y < +1. The steady state energy equa-
tion assuming constant thermophysical properties is

k
@2T
@x̂2 þ

@2T
@ŷ2

 !
¼ qcpU

@T
@x̂

ð1Þ

where U is a uniform velocity while k, q, and cp are the fluid’s ther-
mal conductivity, density, and specific heat. Using a reduced tem-
perature defined as h = T � Ti and dimensionless quantities
x ¼ x̂=W; y ¼ ŷ=W , and x = UW/2a, Eq. (1) takes the form

@2h
@x2 þ

@2h
@y2 ¼ 2x

@h
@x

ð2Þ

where a = k/(qcp). The parameter W is an arbitrarily selected length
and it can be the width of a fluid layer in the ẑ direction perpendic-
ular to x̂ŷ-plane, depicted in Fig. 1. The main task is determination
of a solution for Eq. (2) that satisfies the boundary conditions
Ti

ŷ

T 

x̂

Flow 

0ˆ =x

wqxg =)ˆ(

0)ˆ( =xg

Fig. 1. Schematic of a moving body with a finite wall heat flux when x̂ P 0.
hðx;1Þ ¼ 0
@h=@y ¼ �gðxÞ when y ¼ 0
hð�1; yÞ ¼ 0
@h=@y ¼ finite as x!1

8>>><
>>>:

: ð3Þ

The mathematical procedure begins by using the
transformation

hðx; yÞ ¼ exxwðx; yÞ ð4Þ

to have Eq. (2) taking the form

@2w
@x2 þ

@2w
@y2 �x2w ¼ 0: ð5Þ

As described in [14], the solution of this equation is obtainable by
letting w = X(x)Y(y) in order to separate the variables and to get

X00

X
¼ �Y 00

Y
þx2 ¼ �k2 ð6Þ

with k is being a constant. The solutions for functions X and Y are
X = exp(±ikx) and Y ¼ expð�y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

p
Þ, since y varies between 0

and +1. This leads to a classical integral transform as given in
[21] and in [22, Section 17.21, P. 1183]

wðx; yÞ ¼
Z þ1

�1
AðkÞ expðikxÞ exp �y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

q� �
dk: ð7Þ

Then, the reduced temperature solution, using Eq. (4), becomes

hðx; yÞ ¼ exx
Z þ1

�1
AðkÞ expðikxÞ exp �y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

q� �
dk: ð8Þ

Applying, the prescribed wall heat flux condition @h/@y = �g(x)
when y = 0, leads to a Fourier integral [21,22]

gðxÞ ¼ exx
Z þ1

�1
AðkÞ expðikxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

q
dk

¼
Z þ1

�1
BðkÞ expðikxÞdk ð9Þ

for determination of
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BðkÞ ¼ 1
2p

Z þ1

�1
expð�xnÞgðnÞ½ � expð�iknÞdn ð10Þ

where BðkÞ ¼ AðkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

p
in Eq. (9). Then, the coefficient A(k)

becomes

AðkÞ ¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

p Z þ1

�1
expð�xnÞgðnÞ½ � expð�iknÞdn: ð11Þ

Now, for the special case under consideration, the dimensional heat
flux function g(x) is defined as

gðxÞ ¼
0 when x < 0
qwW=k when x > 0

�
: ð12Þ

After substitution for g(x) in Eq. (11), it becomes

AðkÞ ¼ qwW=k

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

p Z þ1

0
exp �ðxþ ikÞn½ �dn

¼ 1
2p

1
xþ ik

� �
qwW=kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

p
 !

ð13Þ

and then the substitution for A(k) in Eq. (8) provides the following
relation

hðx; yÞ
qwW=k

¼ exx

2p

Z 0

�1

eikxe�y
ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p

ðxþ ikÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

p dkþ
Z 1

0

eikxe�y
ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p

ðxþ ikÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

p dk

" #
:

ð14Þ

The wall temperature at y = 0 is an important parameter for deter-
mination of the heat transfer coefficient

hðx;0Þ
qwW=k

¼ exx

2p

Z 0

�1

eikx

ðxþ ikÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

p dkþ
Z 1

0

eikx

ðxþ ikÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þx2

p dk

" #
:

ð15Þ

The last two equations are valid for positive and negative x values.
They have real and imaginary components which can be deter-
mined. This task can be accomplished by multiplying the numera-
tors and the denominators by x � ik, replacing exp(ikx) by
cos(kx) + isin(kx), and following standard algebraic steps to get

eikx

ðxþ ikÞ ¼
cosðkxÞ þ i sinðkxÞ

ðxþ ikÞ
ðx� ikÞ
ðx� ikÞ

¼ x cosðkxÞ þ k sinðkxÞ
ðx2 þ k2Þ

þ i
x sinðkxÞ � k cosðkxÞ

ðx2 þ k2Þ
: ð16Þ

Since the real part of h(x�y) is the solution in Eq. (14), only the real
part of Eq. (16) is to be retained. Then, the real parts of the complex
integrals in Eq. (14) would become the temperature solution.
Accordingly, after inserting the real part of Eq. (16) into Eq. (14),
the temperature solution takes the form

hðx;yÞ
qwW=k

¼ exx

p

Z 1

0

e�y
ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p

xcosðkxÞ
ðk2þx2Þ3=2 dkþ

Z 1

0

e�y
ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p

ksinðkxÞ
ðk2þx2Þ3=2 dk

" #
:

ð17Þ

It is possible to produce an integrated form of Eq. (17) for deter-
mination of the temperature as a function of x at y = 0 location. To
accomplish this task, one can use [Eq. (3.962) in 21] to get these
two integrals related to the modified Bessel functionsZ þ1

0
e�y

ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p k sinðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þx2
p dk ¼ xxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p K1 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

ph i
ð18aÞ

andZ þ1

0
e�y

ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p cosðkxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þx2
p dk ¼ K0 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

ph i
: ð18bÞ
The integrals in Eq. (17) are obtainable by differentiating both sides
of Eqs. (18a,b) with respect to x to getZ þ1

0
e�y

ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p k sinðkxÞ

ðk2 þx2Þ3=2 dk

¼ �
Z þ1

0
ye�y

ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p k sinðkxÞ

k2 þx2
dk

� x

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p K1 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

ph i

þ x
2

K0 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
þ K2 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �h i
ð19aÞ

andZ þ1

0
e�y

ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p cosðkxÞ

ðk2 þx2Þ3=2 dk

¼ �
Z þ1

0
ye�y

ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p cosðkxÞ

k2 þx2
dk

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
x

K1 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p� �
: ð19bÞ

The left side of Eq. (19a) and the left side of Eq. (19b) are the two
integrals within Eq. (17) and, after substitution, Eq. (17) becomes

hðx;yÞ
qwW=k

¼ exx

p
� x

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p K1 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p� �
þ x

2
K0 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p� �h(

þK2 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p� �i
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
K1 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p� �)
�yFðx;y;xÞ ð20aÞ

wherein

Fðx;y;xÞ¼ exx

p

Z þ1

0
e�y

ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p xcosðkxÞ

k2þx2
dkþ

Z þ1

0
e�y

ffiffiffiffiffiffiffiffiffiffiffi
k2þx2
p ksinðkxÞ

k2þx2
dk

� 	
:

ð20bÞ

It is remarkable that this F(x,y,x) is also the solution for temperature
field in [14] when there is a jump in the wall temperature at x = 0 loca-
tion. Then, the values of this function for x < 0 and x > 0 domains are

Fðx;y;xÞ¼�e�xjxj

p
x
Z y

0
K0 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þg2

p� �
dg�xjxj

Z y

0

K1 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þg2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þg2

p dg

2
4

3
5

ð21aÞ

when x < 0 and

Fðx;y;xÞ¼1

�exx

p
x
Z y

0
K0 x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þg2

p� �
dg�xx

Z y

0

K1 x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þg2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þg2

p dg

2
4

3
5
ð21bÞ

when x > 0. Finally, the wall temperature is obtainable from Eq.
(20a) when y = 0; it becomes

2xhðx;0Þ
qwW=k

¼ e�xjxj

p
2 xjxjþ1ð ÞK1 xjxjð Þ�xjxjK0 xjxjð Þ�xjxjK2 xjxjð Þ½ �

ð22aÞ

when x < 0 and

2xhðx; 0Þ
qwW=k

¼ exx

p
2ðxx� 1ÞK1ðxxÞ þxxK0ðxxÞ þxxK2ðxxÞ½ �

ð22bÞ

when x > 0. These solutions are the sought integrated forms of
Eq. (17) at y = 0 and Fig. 2 shows the variation of

2xhðx; 0Þ
qwW=k

¼ qcpUhðx; 0Þ
qw

ð23Þ
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Fig. 2. Dimensionless wall temperature for a semi-infinite moving medium with a step change in surface heat flux as a function of 2xx ¼ Ux̂=a.
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as a function of 2xx ¼ Ux̂=a. When x < 0, this dimensionless wall
temperature, as defined by Eq. (23), rapidly decreases as |x| in-
creases. However, when x > 0, it shows a gradual increase as x in-
creases. The asymptotic values of these modified Bessel functions
as x goes toward zero are from Eq. (9.6.13) in [23]

K0ðzÞ ffi � lnðz=2Þ þ 0:5772½ �ð1þ z2=2Þ ð24aÞ

and from Eq. (9.6.11) in [23]

K1ðzÞ ffi
1
z
þ z

2
lnðz=2Þ ð24bÞ

with an error less than ±0.5% for 0 < z < 0.45 while
K2(z) = K0(z) + 2K1(z)/z.

Once the temperature distribution is known, it is possible to
compute the heat transfer coefficient. Defining the heat transfer
coefficient as h0(x) = q(x,0)/[T(x,0) � Ti], it becomes h0 = 0 when
x P 0, since q(x,0) = 0. However, when x P 0, q(x,0) = qw is finite
and the heat transfer coefficient is h0(x) = q(x,0)/[T(x,0) � Ti] = qw/
h(x,0). According to this definition, the left side of Eq. (22b) takes
the form

2xhðx;0Þ
qwW=k

¼ UW
a

� �
k

h0ðxÞW

� �

¼ qcpU
h0ðxÞ

¼ 1
StðxÞ

ð25aÞ

and then, for application to slug flow, the Stanton number St
becomes

StðxÞ ¼ pe�xx

2ðxx� 1ÞK1ðxxÞ þxxK0ðxxÞ þxxK2ðxxÞ : ð25bÞ

Note that the Stanton number is solely a function of the dimension-
less parameter xx ¼ Ux̂=ð2aÞ. It is possible to determine the value
of the Stanton number at x = 0 by placing the asymptotic values
of K0(xx) � �ln(xx), K1(xx) � 1/(xx), and K2(xx) � 2/(xx)2 from
[23] in Eq. (25b) to get St(0) = p/2. Fig. 3 shows the computed Stan-
ton number St(x) as a function of 2xx ¼ Ux̂=a. Indeed, when x < 0,
the heat transfer coefficient has a zero value since the wall is insu-
lated and h(x, 0) has a finite value, as depicted in Fig. 2. However,
when x > 0, the Stanton number is equal to 2/p at x = 0 and it grad-
ually decreases as x increases.
The temperature distribution when x = 0 yields valuable infor-
mation. When x = 0 and y is finite, Eq. (20a) reduces to

2xhð0; yÞ
qwW=k

¼ 2xy
p

K1ðxyÞ½ �

�xy
1
2
�xy

2
K0ðxyÞL�1ðxyÞ þ K1ðxyÞL0ðxyÞ½ �

� 

:

ð26aÞ

Substituting for x = UW/2a reduces this equation to

hð0;yÞ
qw=ðqcpUÞ¼

2
p

Uy
2a

� �
K1

Uy
2a

� �� 	

� Uy
2a

� �
1�2

Uy
2a

� �
K0

Uy
2a

� �
L�1

Uy
2a

� �
þK1

Uy
2a

� �
L0

Uy
2a

� �� 	� 


ð26bÞ

where L�1(Uy/2a) and L0(Uy/2a) are the Struve L-functions [23], Eq.
(12.2.1)]. Table 1 shows the values of the dimensionless tempera-
ture on the left side of Eq. (26b) as a function of Uy/a at x = 0 loca-
tion. For slug flow through finite passages, this equation applies
when the temperature penetration is small. As an example, for a
flow between two parallel plated 2H apart, the centerline is located
at y = H. According to the fourth column in Table 1 there is a small
temperature penetration toward the centerline near the x = 0
location when UH/a J 5. This concept is further demonstrated in
the next section.
3. Heat transfer to flow in other passages

The study of heat transfer in two other geometries, as de-
picted in Fig. 4, is appearing within this section. One is a moving
slab between two stationary walls or it can be viewed as a slug
flow between two parallel plates. This geometry is selected for
the purpose of verification of the results presented in the earlier
section. Then, this analysis is extended to include a circular
geometry. In the absence of frictional heating, the energy
equation
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Table 1
Temperature variation in a semi-infinite region at x = 0 location as a function of Uy/a.

Uy/a hð0;Uy=aÞ
qw=ðqcp UÞ Uy/a hð0;Uy=aÞ

qw=ðqcp UÞ

0.0 0.63662 5.5 0.02345
0.5 0.446507 6.0 0.017777
1.0 0.322367 6.5 0.013497
1.5 0.235934 7.0 0.010261
2.0 0.174192 7.5 0.00781
2.5 0.129418 8.0 0.00595
3.0 0.096614 8.5 0.004538
3.5 0.072401 9.0 0.003464
4.0 0.054425 9.5 0.002647
4.5 0.04102 10.0 0.002023
5.0 0.030985 1 0.0

 Ux̂

ŷ

ẑ

q=qwq=0 

 U
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ŷ

ẑ
q=qw

q=qwq=0 
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Fig. 4. Schematics and coordinates of a moving flat plate and a moving circular
medium.
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k
@2T
@x̂2 þ

1
ĝe

@

@ĝ
ĝe @T
@ĝ

� �" #
¼ qcpU

@T
@x̂

ð27Þ

is valid subject to the boundary conditions
ð@T=@ĝÞĝ¼0 ¼ 0 ð28aÞ

ð@T=@ĝÞĝ¼Lc
¼

0 when x̂ < 0
qw=k when x̂ P 0

�
ð28bÞ

T ¼ Ti as x̂! �1 ð28cÞ
@T
@x̂
ffi ðeþ 1Þqw=ðqcpULcÞ as ðx̂! þ1Þ ð28dÞ

where qw is the wall heat flux (per unit area) entering this fluid pas-
sage between x̂ ¼ 0 and1. For a moving medium between two par-
allel plates 2H apart, as shown in Fig. 4, e = 0, Lc = H and ĝ stands for
ŷ while for a moving circular medium, shown in Fig. 4, with radius
r0, e = 1, Lc = r0, and ĝ stands for radius r̂. By defining the dimension-
less coordinates as x ¼ x̂=Lc; g ¼ ĝ=Lc , and �x ¼ x=Pe, the energy
equation as given by Eq. (27) becomes

1
ge

@

@g
ge @T
@ĝ

� �
¼ @T
@�x
� 1

Pe2

@2T
@�x2 ð29Þ

where Pe = ULc/a. The exact temperature solution from Eq. (29) is
deterministic if one defines a function U1ð�x;gÞ so that

T � Ti ¼
qwLc

k

� �
U1ð�x;gÞ ð30aÞ

when �x < 0 and a function U2ð�x;gÞ so that

T � Ti ¼
qwLc

k

� �
U2ð�x;gÞ þ ðeþ 1Þ�xþ 1

2
g2

� 	
ð30bÞ

when �x > 0. Substituting these reduced dimensionless temperature
functions in Eq. (29), the energy equation takes the following forms

1
ge

@

@g
ge @U1

@ĝ

� �
¼ @U1

@�x
� 1

Pe2

@2U1

@�x2

with
@U1

@g
¼ 0 at g ¼ 0 and at g ¼ 1

ð31aÞ

The functional form of Eq. (30b) is selected so that U2ð�x; yÞ function
satisfies a similar partial differential equation; that is

1
ge

@

@g
ge @U2

@ĝ

� �
¼ @U2

@�x
� 1

Pe2

@2U2

@�x2

with
@U2

@g
¼ 0 at g ¼ 0 and at g ¼ 1

ð31bÞ



A. Haji-Sheikh et al. / International Journal of Heat and Mass Transfer 52 (2009) 2092–2101 2097
The Eqs. (31a,b) represent two classical conduction problems,
whose solutions for U1ð�x; yÞ and U2ð�x; yÞ functions have the forms

U1ð�x;gÞ ¼
X1
m¼0

AmWmðgÞebm�x when �x < 0 ð32aÞ

and

U2ð�x;gÞ ¼
X1
m¼0

BmWmðgÞe�km�x when �x > 0: ð32bÞ

These axial eigenvalues, bm and km, for insertion into Eqs. (32a,b)
must be positive in order to satisfy the conditions when �x! �1
and �x! þ1, respectively. The eigenfunctions in these two equa-
tions are selected for a moving plate as

WmðgÞ ¼ cosðcmgÞ ð33aÞ

with g = y and for a moving circular cylinder as Bessel function

WmðgÞ ¼ J0ðcmgÞ ð33bÞ

with g = r. The eigenvalues are cm = mp for a moving plate and for a
moving circular cylinder they are the roots of J1(cm) = 0 with
m = 0,1,2,3, . . ., for both U1ð�x;gÞ and U2ð�x;gÞ functions. When
m = 0, c0 = 0 for both passages. Once cm is known, both bm or km is
to be determined by inserting U1ð�x;gÞ or U2ð�x;gÞ from Eqs. (32a)
or (32b) into Eqs. (31a) or (31b), respectively. Each member of
U1ð�x;gÞ function must satisfy Eq. (31a) and each member of
U2ð�x;gÞ function must satisfy Eq. (31b). Then, the substitution of
U1ð�x;gÞ into Eq. (31a) yields

bm ¼
1
2

Pe2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

m=Pe2
q

þ 1
� 	

ð34aÞ

and the substitution of U2ð�x;gÞ into Eq. (31b) provides

km ¼
1
2

Pe2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

m=Pe2
q

� 1
� 	

: ð34bÞ

Next, the compatibility conditions at x = 0 are used for the
determination of Am and Bm coefficients. Since T(0�,g) = T(0+,g),
Eqs. (30a,b) produce the relation

U1ð0gÞ ¼ U2ð0gÞ þ 1
2
g2: ð35aÞ

The use of the second compatibility condition
½@Tð�x;gÞ=@�x��x¼0� ¼ ½@Tð�x;gÞ=@�x��x¼0þ results in the relation

@U1ð�x;gÞ
@�x

� 	
�x¼0
¼ @U2ð�x;gÞ

@�x

� 	
�x¼0
þ ðeþ 1Þ: ð35bÞ

Now, the final solutions for these fluid passages are known after
determination of the coefficients Am and Bm. These solutions have
different forms and they are presented separately.

For a moving flat plate, the function Wm(g) in (32a,b) becomes
cos(cmy) with cm = mp. Then, by placing U1ð�x;gÞ and U2ð�x;gÞ in
the compatibility conditions followed by the application of the
orthogonality condition, results in two simultaneous equations

Am � Bm ¼
1

Nm

Z 1

0

1
2

y2 cosðcmyÞdy ¼
1
6 when m ¼ 0
2ð�1Þm

c2
m

when m > 0

(
ð36aÞ

and

bmAm þ kmBm ¼
1

Nm

Z 1

0
cosðcmyÞdy ¼

1 when m ¼ 0
0 when m > 0

�
ð36bÞ

where Nm is the norm and Nm = 1 when m = 0 while Nm = 1/2 when
m > 0. For m = 0, one gets A0 � B0 = 1/6 from Eq. (36a) and Eqs.
(34a,b) provide b0 = Pe2 and k0 = 0; then, using Eq. (36b) to get
A0 = 1/Pe2 and this makes B0 = 1/Pe2 � 1/6. When m > 0, the other
coefficients are determined from the two Eqs. (36a,b) as
Am ¼
2ð�1Þm

c2
m

km

km þ bm
ð37aÞ

and

Bm ¼ �
2ð�1Þm

c2
m

bm

km þ bm
ð37bÞ

while the values of parameters bm and km are given by Eqs. (34a,b).
Finally, the dimensionless temperature becomes

kðT � TiÞ
qwH

¼ 1
Pe2 expðPe2�xÞ þ

X1
m¼1

2ð�1Þm

c2
m

km

km þ bm
cosðcmyÞ

� expðbm�xÞ ð38aÞ

when �x < 0 and

kðT � TiÞ
qwH

¼ 1
Pe2 �

1
6
þ �xþ 1

2
y2 �

X1
m¼1

2ð�1Þm

c2
m

bm

km þ bm

� cosðcmyÞ expð�km�xÞ ð38bÞ

when �x P 0.
The aforementioned procedure is repeated for a moving circular

cylinder for determination of the coefficients Am and Bm; it results
in the following relations:

Am � Bm ¼
1

Nm

Z 1

0

1
2

r2J0ðcmrÞrdr ¼
1
4 when m ¼ 0

2
c2

mJ0ðcmÞ
when m > 0

(
ð39aÞ

bmAm þ kmBm ¼
2

Nm

Z 1

0
J0ðcmrÞrdr ¼

2 when m ¼ 0
0 when m > 0

�
: ð39bÞ

As in the previous case, Eqs. (34a,b) provide b0 = Pe2 and k0 = 0; this
makes A0 = 2/Pe2 and B0 = 2/Pe2 � 1/4. Furthermore, the other coef-
ficients are obtained as

Am ¼
2

c2
mJ0ðcmÞ

km

km þ bm
ð40aÞ

and

Bm ¼
2

c2
mJ0ðcmÞ

bm

km þ bm
: ð40bÞ

After appropriate substitutions, Eqs. (30a,b) would produce the fol-
lowing temperature solutions

kðT � TiÞ
qwH

¼ 1
Pe2 expðpe2�xÞ þ

X1
m¼1

2
c2

mJ0ðcmÞ
km

km þ bm

� �
J0ðcmrÞ

� expðbm�xÞ ð41aÞ

when �x < 0 and

kðT � TiÞ
qwH

¼ 2
Pe2 �

1
4
þ 2�xþ 1

2
r2

�
X1
m¼1

2
c2

mJ0ðcmÞ
bm

km þ bm

� �
J0ðcmrÞ expðkm�xÞ ð41bÞ

when �x P 0.

4. Numerical results and discussions

The dash line with circular symbols in Fig. 5 describes the wall
temperature for the moving semi-infinite domain from Eq. (22b),
also plotted in Fig. 2. The abscissa in Fig. 2 and in Fig. 5 is
xPe ¼ Ux̂=a, independent of the characteristic length. Furthermore,
Fig. 5 shows the computed values of the dimensionless wall tem-
perature from Eq. (38b), when x̂ > 0, for a moving flat plate using
different Peclet numbers Pe ¼ UH=a. This figure indicates that
the dimensionless wall temperature reduces as Pe increases, when
Pe is relatively small. However, as Pe becomes larger, the lines
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converge to the single limiting dash line with circular symbols for
the semi-infinite domain. Indeed, this figure shows that the data in
Fig. 2 serve as a limiting solution as Pe increases beyond 5. This
phenomenon is expected as discussed in an earlier section. Addi-
tionally, for slug flow between two parallel plates, Fig. 6 shows
the corresponding computed Stanton number values

St ¼ qw

qcpUðTw � TiÞ
ð42Þ

at different Peclet. As expected from an earlier discussion, when Pe
increases to beyond 5, the plotted St values approach their limiting
values as they appear in Fig. 3.

Therefore, the Stanton number for a moving semi-infinite
medium serves as an upper limit for a moving plate or for a
slug flow between two parallel plates. The aforementioned for-
mulations show that this upper limit behavior should hold for
other passages. To demonstrate this issue, the Stanton number
is numerically determined for slug flow in a circular duct from
Eq. (41b). Fig. 7 indicates that the computed values of the
Stanton number show similar behaviors as those presented in
Fig. 6.

It was noted that Eqs. (38a,b) and (41a,b) are well-behaved ser-
ies solutions with rapid convergence when Pe < 1. Indeed for
Pe 6 0.5, a solution with a single eigenvalue can produce a rela-
tively accurate solution over the entire range of Ux̂=a parameter.
For Pe > 1, a moderate increase in the number of eigenvalues is
adequate until Pe becomes very large. Of course at large values
of Pe, the solution given by Eq. (22b) yields an asymptotic solution
at small Ux̂=a parameter, as shown in Fig. 6 for Pe > 5 and in Fig. 7
for Pe > 10. Also, as an illustration for small 2ðxxÞ ¼ Ux̂=a, Eq.
(22b) with asymptotic values from Eqs. (24a,b) takes a simpler
form

qcpUhðx;0Þ
qw

¼ exx

p
2� 0:5772ðxxÞ½2þ ðxxÞ2� � ðxxÞ½2� ðxxÞ
n

þðxxÞ2� lnðxxÞ
o

ð43Þ

with an error of less than 1% for Ux̂=a 6 1.
The determination of the commonly used heat transfer coeffi-

cient h = qw/(Tw � Tb) is the next subject of this presentation. The
method of determination of the wall temperature is in the earlier
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Fig. 5. A comparison of the wall temperature for parallel pl
presentation. For slug flow between two parallel plates, the bulk
temperature values are obtained from the relations

Tb;1 � Ti ¼
1
H

Z H

0
T1 � Tið Þdŷ ¼ qwH

k

� � exp �Pe2j�xj
� �

Pe2 ð44aÞ

when �x < 0 and

Tb;2 � Ti ¼
1
H

Z H

0
ðT2 � TiÞdŷ ¼ qwH

k

� �
1

Pe2 þ �x
� �

ð44bÞ

when �x > 0. Also, for slug flow through a circular duct, the bulk
temperature can be determined using the relations

Tb;1 � Ti ¼
1

pr2
0

Z r0

0
T1 � Tið Þ2pr̂dr̂

¼ qwr0

k

� �2 exp �Pe2j�xj
� �
Pe2 ð45aÞ

when �x < 0 and

Tb;2 � Ti ¼
1

pr2
0

Z r0

0
ðT1 � TiÞ2pr̂dr̂ ¼ qwr0

k

� � 2
Pe2 þ 2�x
� �

ð45bÞ

when �x > 0. It is to be noted from Eqs. (44a), (45a) that, when
�x ¼ 0, the dimensionless bulk temperature becomes [Tb,1(0) � Ti]/
(qwH/k) = 1/Pe2 for parallel-plate ducts and it is equal to 2/Pe2

for circular ducts. Also, a comparison of Eq. (44b) with Eq.
(45b) indicates that the bulk temperature in Eq. (45b) increases
at a higher rate than bulk temperature in Eq. (44b) as �x increases.
Furthermore, the wall temperatures from Eq. (41b) exhibit similar
behaviors and increases faster than the wall temperature from Eq.
(38b), as �x increases.

Since the wall temperature and the bulk temperature are read-
ily available, it is possible to determine the Nusselt number
NuD = hDh/k parallel plate passage where Dh = 4H is the hydraulic
diameter and h = qw/(Tw � Tb). The computed Nusselt number val-
ues plotted in Fig. 8 show the variation of

NuD ¼
4qwH

kðTw � TbÞ
ð46aÞ

as a function of �x for different Peclet numbers. As can be seen from
Fig. 8, the Nusselt number has a finite value as �x goes toward zero
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ate channels with those from a semi-infinite flow field.
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and it approaches NuD = 12 as �x becomes very large. Also, for circu-
lar passages with Dh = 4r0, the calculated Nusselt number

NuD ¼
2qwr0

kðTw � TbÞ
ð46bÞ

values for this passage are plotted in Fig. 9. The plotted lines in Fig. 9
show similar behaviors as those in Fig. 8 when �x is relatively small.
However, the lines in Fig. 8 have smaller values than those in Fig. 8
for the same Peclet numbers while they all approach an asymptotic
value of 8 as �x becomes very large.

The information from the slug flow within these passages with
prescribed wall heat flux can become a useful tool for the study of
heat transfer in porous passages. It can provide limiting solutions
for these passages, as the porosity reduces. As an application to
classical conduction in moving solid bodies, these limiting solu-
tions become valuable when a moving wall is heated discretely.
Because the working partial differential equation and boundary
conditions are linear, one can use superposition of two solutions.
As an example, for a single heat source between x = 0 and x = x1,
the temperature field becomes

Dhðx; yÞ ¼ hðx; yÞ � hðx� x1; yÞ: ð47Þ

This methodology can be extended when there are multiple
heating sites. It is to be noted that each h solution contains the con-
tributions from positive and negative sides of its axial coordinate.

5. Conclusion

The computed information show that the Stanton number has a
maximum value of p/2 at x = 0 where a step change in temperature
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occurs and it gradually reduces as x increases. The presence of an-
other wall also contributes to the axial conduction in the neighbor-
hood of the thermal entrance location. This phenomenon causes
increase in the temperature of the approaching fluid from x 6 0
location in the thermal entrance regions of parallel-plate ducts, cir-
cular pipes, and those with two-dimensional cross sections, e.g., in
rectangular and triangular ducts. Additionally, since the Stanton
number for slug flow is larger than that for flow with other velocity
profiles, it serves as an upper limit.

Furthermore, available studies show that neglecting axial con-
duction produces an infinite heat transfer coefficient at the loca-
tion where a step change in the surface heat flux occurs. Since a
value of St = p/2 serves as an upper limit and is far less than infin-
ity, the axial conduction in ducts should not be ignored unless the
Peclet number is relatively large, as shown in Figs. 8 and 9.
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